Electroacupuncture suppresses myostatin gene expression: cell proliferative reaction in mouse skeletal muscle.
نویسندگان
چکیده
Complementary and alternative medicine (CAM) may provide patients with an alternative to traditional medicine, but an assessment of its efficacy is required. One CAM method, electroacupuncture (EA) treatment, is a maneuver that utilizes stimulation of acupuncture needles with a low-frequency microcurrent. To study the effect of short-term EA, we evaluated the differential expression of genes induced by EA in mouse skeletal muscle for up to 24 h. We then used RT-PCR to confirm the expression patterns of six differentially expressed genes. Bioinformatics analysis of their transcription control regions showed that EA-inducible genes have numerous common binding motifs that are related to cell differentiation, cell proliferation, muscle repair, and hyperplasia. These results suggested that EA treatment may induce cell proliferation in skeletal muscle. To verify this possibility, we used EA to stimulate mouse skeletal muscle daily for up to 1 mo and examined the long-term effects. Immunohistochemical analysis showed that nuclei of muscle cells treated with EA for 1 mo, especially nuclei of satellite cells, reacted with anti-human PCNA. Also, expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells, was suppressed by daily EA treatment for 1 wk; EA treatment for 1 mo resulted in more marked suppression of the gene. These molecular findings constitute strong evidence that EA treatment suppresses myostatin expression, which leads to a satellite cell-related proliferative reaction and repair in skeletal muscle.
منابع مشابه
Effect of Three Therapeutic Methods of Exercise, Ozone, and Stem Cells on the MEF2C Expression and Myostatin Levels in Femoral Muscle Tissue of the Osteoarthritis Rats
Aims Myostatin and Myocyte Enhancer Factor 2C (MEF2C) are involved in muscle changes associated with bone problems. The aim of the present study was to determine the effect of three therapeutic methods of exercise, ozone, and stem cells on MEF-2C gene expression and myostatin levels of femoral muscle tissue in osteoarthritis rats. Methods & Materials This experimental study was done on 63 male...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملThe Expression of Myogenin and Myostatin Genes in Baluchi Sheep
Myogenin gene (MYoG) affects the synthesis of muscle myofibrillar growth and increase of meat production. The myostatin (MSTN) gene is identified as a specific negative regulator of skeletal muscle growth. Reduction of the expression level of MSTN throughmutation in the sequence of this gene leads to an increase of myogenesis and regeneration of muscle cells during the postnatal growing period ...
متن کاملMyostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle
Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidat...
متن کاملMyostatin promotes tenogenic differentiation of C2C12 myoblast cells through Smad3
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in developing and adult skeletal muscle and negatively regulates skeletal muscle growth. Recently, myostatin has been found to be expressed in tendons and increases tendon fibroblast proliferation and the expression of tenocyte markers. C2C12 is a mouse myoblast cell line, which has the ability to transdif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2007